DBEI | CCEB  |  Intranet

Qi Long, PhD



Qi Long, PhD

Professor of Biostatistics

Dr. Long’s research purposefully includes novel statistical research and impactful biomedical research, each of which reinforces the other. Its thrust is to develop statistical and machine learning, bioinformatics, and data mining methods and tools for advancing precision medicine and population health with keen interests in the use of big biomedical data including, but not limited to, -omics data, electronic health records (EHRs) data, and mobile health (mHealth) data.

Specifically, he has developed methods for analysis of big biomedical data, predictive modeling, missing data, causal inference, Bayesian methods and clinical trials. He also has made significant contributions to biomedical research areas such as cancer, cardiovascular diseases, diabetes, mental health and stroke.

Dr. Long’s research has been supported by the National Institutes of Health (NIH), the Patient-Centered Outcomes Research Institute, the National Science Foundation, the U.S. Department of Veterans Affairs and the American Heart Association (AHA).

He was a member of the Emory Winship Cancer Institute, a senior statistician at the Emory Clinical Cardiovascular Research Institute, and a statistician at the Atlanta Veterans Administration Medical Center. He has directed the statistical and data coordinating centers of multiple NIH/AHA-supported studies—including multi-center clinical studies—supervising a team of database administrators and programmers, application developers and statistical analysts. 

Dr. Long is an elected fellow of the American Statistical Association and an elected member of the International Statistical Institute. He currently directs the Biostatistics Core in the Abramson Cancer Center at the University of Pennsylvania.

Read more about Dr. Long's research.

Content Area Specialties

Cancer, cardiovascular diseases, diabetes, kidney diseases, mental health, stroke.

Methodology Specialties

Methods for analysis of big data (with application to -omics, electronic health records, and mobile health data), predictive modeling, missing data, causal inference, Bayesian modeling and methods, functional data analysis, clinical trials, nonparametric and semi-parametric methods.

Share this Content

About Us

To understand health and disease today, we need new thinking and novel science —the kind  we create when multiple disciplines work together from the ground up. That is why this department has put forward a bold vision in population-health science: a single academic home for biostatistics, epidemiology and informatics. MORE

© 2019 Trustees of the University of Pennsylvania. All rights reserved. | Disclaimer

Follow Us