Obesity and Adiposity-Related CKD Subgroups and Metabolites

Findings from the Chronic Renal Insufficiency Cohort (CRIC) Study

Presented by
Zihe (Emma) Zheng

The Department of Biostatistics,
Epidemiology and Informatics

AND

The Center for Clinical
Epidemiology and Biostatistics

March 24, 2021 | 3rd ANNUAL EVENT
Virtual this year

#2021ResearchDay
Study Background & Aim

- Chronic kidney disease (CKD) patients are a heterogeneous population.
- Obesity and excessive adiposity increases the risks of adverse outcomes of CKD.
- “Obesity-paradox” and CKD survival is not fully understood.

- Aim: we propose to identify distinct “adiposity-obesity-related” (AOR) CKD subgroups and to perform analysis on high-dimensional metabolomics data with CKD subgroups and clinical endpoints.

Methods

Study population: 1,529 of 3,939 participants from Chronic Renal Insufficiency Cohort (CRIC) Study, an NIDDK-funded, multi-center, longitudinal cohort of well-characterized adults with CKD in the U.S.

- 1,529 subjects with metabolomic measurements at CRIC year 1 visit
- 20 adiposity-obesity parameters from BL (No outcome)
- AI algorithm Consensus Clustering
- Examine potential number of clusters: 2, 3, …, 8 (K-mean)
- Metabolomics analysis: Uni/multivariable regression model
 - Bonferroni cut-off: \(p < 0.05/634 = 7.9 \times 10^{-5} \)
- Survival analysis: Cox regression model
 - 6 endpoints: CKD progression (×2), CVD (×3) and death
- Model adjustment: age, gender, race, eGFR, Log(UACR), smoking and CVD history
Arise from the adiposity-obesity data pattern of 20 variables, we identified three distinct CKD adiposity-obesity related (AOR) subgroups in a CKD population.

- **Low DM/Ob risk group** has relatively low prevalence of diabetes, preferable diabetic markers and obesity profiles, and uses less medications; the kidney function is the most optimal among all three groups.

- **High Ob risk group** has low HDL, relatively high prevalence of diabetes and high insulin resistance level and non-preferable obesity profiles.

- **High DM risk group** has average obesity risks but relatively high prevalence of diabetes WITHOUT adequate glycemic control and uses more diabetes medications; has more proteinuria.
Compared to CKD patients with low DM and obesity risks (ref) with confounder adjustment,

- High DM risk is associated with 87% increased hazard for eGFR halving and ESRD and 85% increased hazard for ESRD.
- High obesity risks is associated with 2.5 times increased hazard for CHF, and 2.1 times increased hazard for composite CVD outcome of CHF, MI, stroke and PAD.

Metabolites significantly associated (adjusted) with AOR subgroups (p<7.9×10⁻⁵)

<table>
<thead>
<tr>
<th>Metabolite pathway</th>
<th>N</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipid</td>
<td>146</td>
<td>81.56</td>
</tr>
<tr>
<td>Amino Acid</td>
<td>12</td>
<td>6.7</td>
</tr>
<tr>
<td>Organic acids and derivatives</td>
<td>6</td>
<td>3.35</td>
</tr>
<tr>
<td>Cofactors and Vitamins</td>
<td>4</td>
<td>2.23</td>
</tr>
<tr>
<td>Nucleotide</td>
<td>4</td>
<td>2.23</td>
</tr>
<tr>
<td>Organic oxygen compounds</td>
<td>3</td>
<td>1.68</td>
</tr>
<tr>
<td>Organoheterocyclic compounds</td>
<td>2</td>
<td>1.12</td>
</tr>
<tr>
<td>Xenobiotics</td>
<td>2</td>
<td>1.12</td>
</tr>
<tr>
<td>(missing)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>179</td>
<td>100</td>
</tr>
</tbody>
</table>

Among 634 known metabolites, 179 metabolites are significantly associated with AOR subgroup.

- 82% lipids metabolites
- 7% amino acid metabolites

Kaplan-Meier curves

- **p < 0.0001**
 - Cluster 2: 1.873 (1.541, 2.278)
 - Cluster 3: 1.283 (1.038, 1.585)

- **p < 0.0001**
 - Cluster 2: 1.616 (1.213, 2.153)
 - Cluster 3: 2.451 (1.835, 3.274)

- **p < 0.0001**
 - Cluster 2: 1.514 (1.206, 1.900)
 - Cluster 3: 2.055 (1.626, 2.598)
Conclusions

• With consensus clustering and metabolomics analysis, we discovered three distinct AOR subgroups of CKD patients that were associated with numerous metabolites and different risks of clinical endpoints.

• Novel biomarkers that co-segregate with different patient subgroups could shine a light on the obesity related biology of CKD.