Opioid Drug-Drug-Drug Interactions and Unintentional Traumatic Injury: Screening to Detect Three-Way Drug Interaction Signals

Emily K. Acton, MSCE1,2,3, Sean Hennessy, PharmD, PhD1,2,4,5,6, Colleen M. Brensinger, MS1,2, Warren B. Bilker, PhD1,2, Todd A. Miano, PharmD, PhD1,2, Sascha Dublin, MD, PhD6,9, Allison W. Willis, MD, MS1,2,3,5, Charles E. Leonard, PharmD, MSCE1,2,4,5

1. Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania; 2. Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania; 3. Translational Center of Excellence for Neuropathology and Neurology Outcomes Research, Department of Neurology, Perelman School of Medicine, University of Pennsylvania; 4. Center for Therapeutic Effectiveness Research, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania; 5. Leonard Davis Institute of Health Economics, University of Pennsylvania; 6. Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; 7. Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania; 8. Kaiser Permanente Washington Health Research Institute; 9. Department of Epidemiology, School of Public Health, University of Washington

Background

• Growing evidence suggests that drug interactions represent major, potentially addressable contributors to the known association between prescription opioid use and unintentional traumatic injury
• However, prior research has exclusively focused on the role of pairwise interactions, with the importance of higher-order (i.e., drug-drug-drug) interactions (3DIs) remaining unexamined

Methods

• We conducted bi-directional, self-controlled case series studies using 2000-2015 Optum Clincinformatics data
• Rates of unintentional traumatic injury were examined in individuals dispensed opioid-precipitant base pairs during time exposed vs unexposed to a candidate interacting precipitant
• Cohorts consisted of 16-90 year-old new users of opioid-precipitant base pairs, with ≥1 outcome during observation
• To estimate rate ratios (RRs), we used conditional Poisson regression adjusted for opioid dose and prior traumatic injury as time-varying covariates assessed during each day of observation time
• Semi-Bayes shrinkage was applied to address multiple estimation

Results

• For hydrocodone, tramadol, and oxycodone (most commonly used opioids), we examined 16024, 8185, and 9330 base pairs ± candidate precipitants, respectively
• Among these, 75 (0.5%; hydrocodone), 57 (0.7%; tramadol), and 42 (0.5%; oxycodone) were significantly positively associated with traumatic injury (50 unique base precipitants, 34 unique candidate precipitants) and were therefore deemed potential 3DI signals
• Statistically significantly elevated adjusted RRs ranged from 1.38 (95% CI 1.03–1.83) for hydrocodone+hydrochlorothiazide with cyclobenzaprine to 2.86 (1.49–5.49) for oxycodone+simvastatin with acetaminophen

Objective

• To identify signals of opioid 3DIs with commonly co-dispensed medications leading to unintentional traumatic injury using semi-automated, high-throughput screening of US commercial health insurance data

Conclusions

• We present a novel approach for 3DI signal detection using pharmacoepidemiologic screening, which could have broad applicability across drug classes and healthcare databases
• The signals found in this study provide valuable foundations for the advancement of future research into opioid 3DIs, promoting hypothesis generation and serving as a basis for crucially needed 3DI etiologic studies

Figure 1. Example of opioid object + precipitant base pair exposure episode eligible for inclusion

Figure 2. Commonly prescribed opioid + precipitant base pair with candidate interacting precipitant associations with unintentional traumatic injury

The x-axis represents the log base 2 (semi-Bayes shrunk adjusted RR) for opioid + precipitant base pair with candidate interacting precipitant vs. opioid + precipitant base pair. The y-axis represents the log (1 / p-value) for the semi-Bayes shrunk adjusted RR. Data points in the upper right quadrant represent statistically significant elevated RR for the association between opioid + precipitant base pair with candidate interacting precipitant and injury.