Accounting for Selection Bias in Transplant Benefit and Waitlist Urgency Models

E Schnellinger,1 E Cantu,2 M Harhay,1 D Schaubel,1 S Kimmel,3 and A Stephens-Shields1

1Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania; 2Department of Surgery, Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania; 3Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida

Background & Motivation

- Lung transplant candidates in the U.S. are prioritized based on estimated pre- and post-transplant survival via Lung Allocation Scores (LAS).
- These models do not account for selection bias:
 - Individuals being removed from the waitlist due to receipt of transplant (dependent censoring)
 - Transplanted individuals necessarily having survived long enough to receive transplant (survivor bias)
- Such selection bias leads to inaccurate predictions
- We developed a modified LAS using inverse probability weighting to improve the accuracy of the LAS by accounting for selection bias in the pre- and post-transplant survival models

Methods

- **Data Source**: Pre- and post-lung transplant data from the United Network for Organ Sharing (UNOS)
 - **Development cohort**: Patients ≥18 years old listed for single or bi-lateral lung transplantation in the U.S. between January 1, 2010 and December 31, 2013
 - **Testing cohort**: Patients meeting above criteria listed between January 1, 2016 and December 31, 2017
- **Weights**: Constructed time-varying inverse probability of treatment weights (IPTW) and inverse probability of censoring weights (IPCW) to mitigate selection bias
- **Outcome Models**: Fit weighted Cox proportional hazards models to the pre- and post-transplant data using the same variables as the existing pre- and post-transplant LAS, but weighted by each patient’s final, cumulative weight or their post-transplant weight, respectively.
- **Assessing Model Performance**
 - **Discrimination**: time-dependent receiver operating characteristic (ROC) curves evaluated at 1-year post-waitlist registration or 1-year post-transplant
 - **Calibration**: observed (Kaplan-Meier) vs. predicted survival curves based on tertiles of the linear predictor of the pre and post-transplant outcome models

Comparing Modified & Existing LAS

- Applied weighted outcome models to the testing cohort to estimate a modified LAS score for each patient considering all possible offer dates between 2016-2017
- Ranked patients at each offer date based on their modified and existing LAS scores
- Assessed the difference between the modified and existing LAS models via:
 - Bland-Altman plots of the modified vs. existing scores and ranks
 - Scatterplots of differences in predicted pre- and post-transplant survival

Results

| Table 1. Time-dependent AUC (with bootstrap standard error) at 1-year post-waitlist registration and 1-year post-transplant for the modified and existing LAS |
|---|---|---|
| Cohort | Data | Existing LAS | Modified LAS |
| Development | Pre-tx | 0.68 (0.01) | 0.74 (0.01) |
| Post-tx | 0.56 (0.01) | 0.60 (0.01) |
| Testing | Pre-tx | 0.67 (0.03) | 0.75 (0.02) |
| Post-tx | 0.54 (0.02) | 0.57 (0.02) |

Abbreviations: tx=transplant

- **Modified model has better discrimination than the existing LAS in both the development and testing cohorts**
- **Calibration improved under the modified pre-transplant model, and was comparable under the modified post-transplant model**
- **Patients at the extremes tend to receive similar LAS scores under the two models; intermediate patients experience more changes under the modified model, with a distinct group receiving lower scores**
- **Changes in priority were explained more by differences in predicted pre-transplant survival than differences in predicted post-transplant survival**
- **Predicted post-transplant survival under the modified LAS tends to be the same or greater than that under the existing LAS**

Conclusions & Next Steps

- **Inverse probability weighting can mitigate selection bias in lung transplant allocation scores**
- **Our approach can be applied to any organ allocation system that relies on estimates of pre- and post-transplant survival to prioritize patients**
- Further research will explore:
 - The demographic and clinical characteristics of patients who tend to receive higher or lower priority under the modified LAS relative to the existing LAS
 - How the modified LAS would impact observed pre- and post-transplant survival if it were implemented in clinical practice

This research is funded by NIH F31 HL 194338 from NHLBI.