Motivation of the Study

Missing data mechanisms:
- Missing completely at random (MCAR)
- Missing at random (MAR)
- Missing not at random (MNAR)

Simplest methods dealing with missing data:
1. complete case analysis (CCA)
2. available case analysis (ACA)

For simple linear regression models, CCA/ACA sometimes may provide unbiased estimates:
- No missing data in X_i and missing data of Y_i are MAR (Little, 1992).
- Both missing data of X_i and Y_i are MAR, but do not depend on observed responses (Little and Rubin, 2002).

Motivated by White and Carlin (2010), we would like to assess the performance of ACA versus that of one of the most practical methods—multiple imputation (MI)—in longitudinal setting under a variety of missing data generation scenarios.

Multiple Imputation

Multiple imputation (MI, Rubin, 1987) has been one of the most welcoming methods for dealing with missing data problems in both academia and industry. The fundamental idea of MI is to draw more than one imputed values from the predictive distribution of the missing data reflecting uncertainty.

For simple linear regression models, CCA/ACA sometimes may provide unbiased estimates:
- Missing not at random (MNAR)
- Missing at random (MAR)
- Both of Y_i's and X_i's

Multiple Imputation Model

The linear mixed-effects model (LMM, Laird and Ware, 1982) is given by:
$$ Y_i = X_i\beta + Z_i\beta_0 + \epsilon_i $$

- Y_i: an $m \times 1$ vector of observations;
- X_i: an $m \times p$ matrix of fixed-effects covariates;
- β: a p-dimensional vector of regression coefficients;
- Z_i: a known $m \times q$ design matrix;
- β_0: a q-dimensional vector of random effects;
- ϵ_i: an m-dimensional vector of error terms.

Simulation Results

We consider missing data in:
- longitudinal outcome Y_i's;
- time-invariant fixed covariate X_i's;
- both of Y_i's and X_i's.

Simulation setup:
- Within each simulation: $n = 400$ subjects and $m = 5$ time points;
- Number of simulation runs: $R = 1,000$.
- For each simulation, we apply Complete data analysis (CDA), ACA, FCS, CART and PAN.
- For each simulation run, we report point estimates (EST), percentage of bias (PB), standard error (SE), relative efficiency (RE) and coverage of probability (CP).

Scenario I: Missing data scenario: Y_i under MAR.

- Misssing in Y_i: ONLY. Unbiased: ACA, FCS and PAN; RE: ACA \approx PAN $>$ FCS
- Missing in X_i or Y_i: Unbiased: ACA and FCS; RE: FCS $>$ ACA

Recommendation:
- Missing in Y_i: ONLY: ACA
- Missing in X_i or Y_i: FCS

Scenario II: Missing data scenario: Y_i under MAR; the missingness may depend on observed responses, fully observed covariates or both.

- Unbiased: ACA, FCS and PAN.
- RE: ACA \approx PAN $>$ FCS (under all three settings)

Recommendation: ACA

Scenario III: X_i under MAR; the missingness may depend on observed responses, fully observed covariates or both.

- Missings depends on covariates only: Unbiased: ACA, FCS and PAN; RE: ACA \approx FCS $>$ PAN
- Missingness depends on responses only: Unbiased: ACA and FCS; RE: FCS $>$ ACA
- Missingness depends on both. Unbiased: ACA and FCS; RE: FCS $>$ ACA

Recommendation:
- Missingness depends on covariates only: ACA
- Missingness depends on responses only: FCS
- Missingness depends on both: FCS

Scenario IV: X_i under MAR; the missingness only depends on other fully observes covariates.

- Y_i under MAR; the missingness may depend on observed responses or both observed covariates and responses.
- Unbiased: ACA and FCS
- RE: ACA $>$ FCS (under both combos)

Recommendation: ACA

Simulation Results (Cont’d)

Scenario V

- X_i under MAR; the missingness depends on both observed covariates and responses.
- Y_i under MAR; the missingness may depend on observed responses or both observed covariates and responses.
- Unbiased: FCS
- RE: FCS is the only method providing unbiased estimates.

Recommendation: FCS

PPMI data analysis

- Longitudinal response: Montreal Cognitive Assessment (moca, MAR)
- Temporal covariates: Yearly follow-up
- Time-invariant covariates: age (at baseline) and gender
- Two covariates of primary interest:
 - MRI volume in Frontal ROI (at baseline, MAR)
 - MRI volume in Parietal ROI (at baseline, MAR)

Parameter Name	ACA	FCS	CART	PAN
intercept | 30.917 | 30.549 | 30.534 | 30.951
SE | 1.138 | 0.863 | 0.826 | 0.824
time | -0.454 | -0.424 | -0.409 | -0.429
SE | 0.103 | 0.066 | 0.065 | 0.065
age | -0.069 | -0.068 | -0.069 | -0.078
SE | 0.017 | 0.014 | 0.012 | 0.023
gender | 0.563 | 0.489 | 0.545 | 0.853
SE | 0.329 | 0.247 | 0.233 | 0.238
Frontal ROI | 0.363 | 0.441 | 0.440 | 0.132
SE | 0.170 | 0.202 | 0.132 | 0.151

References