Practical Implementation of a Model-based Dose-finding Design in a Phase I Combination-Schedule Trial

Pavel Mozgunov

pavel.mozgunov@mrc-bsu.cam.ac.uk

April 2024

Acknowledgement

This work is based on

Mozgunov et.al. (2022) *Practical implementation of the POCRM in a Phase I combination-schedule dose-finding trial*. Statistics in Medicine, 41(30), pp.5789-5809.

- Marianna Grinberg (ex Merck Healthcare KGaA, now UCB)
- Ioannis Gounaris (Merck Serono Ltd.)
- Thomas Goddemeier (Merck Healthcare KGaA)
- Anja Victor (Merck Healthcare KGaA)
- Thomas Jaki (University of Cambridge, UK)

Motivating Trial

- Phase I Combination Trial in Oncology
- Two compounds:
 - Approved agent N (two doses)
 - Experimental agent M1774 (five doses)
- Two administration schedules of M1774
 - Continuous once daily dosing
 - A schedule with breaks from treatment (\sim half as intensive)
- The primary objective: study safety and find MTC

Challenges

- Unknown ordering for some combinations;
- 3-dimensional dose-finding problem;
- How to model combination-schedules.
- Twenty combination-schedules (some might not be tried);
- Use the model beyond this trial.

 \rightarrow The partial ordering continual reassessment method (POCRM) by N Wages et.al (2011).

Partial Ordering Continual Reassessment Method

- *R* feasible orderings of the regimens;
- r index of ordering, $r = 1, \ldots, R$;
- $i \text{index of the regimen}, i = 1, \dots, 20;$
- π_{ir} standardised regimen level;
- p_{ir} probability of a DLT.

$$p_{ir} = \pi_{ir}^{\exp(\alpha_r)}.$$

Models π_{ir} are constructed from a skeleton $\tilde{\pi}_i$ by re-ordering it.

Toy Example

Agents A and B; two doses of each.

$$\begin{array}{c} (A_1; B_2) & (A_2; B_2) \\ (A_1; B_1) & (A_2; B_1) \end{array}$$

Skeleton: $\pi = (0.10, 0.20, 0.30, 0.40)$

	Combinations					
Ordering	$(A_1; B_1)$	$(A_2; B_1)$	$(A_1; B_2)$	$(A_2; B_2)$		
1	$(0.10)^{\alpha_1}$	$(0.20)^{\alpha_1}$	$(0.30)^{\alpha_1}$	$(0.40)^{\alpha_1}$		
2	$(0.10)^{\alpha_2}$	$(0.30)^{\alpha_2}$	$(0.20)^{\alpha_2}$	$(0.40)^{\alpha_2}$		

- The first cohort is allocated to the starting regimen;
- OLT outcomes evaluated.
- OCRM fits a model under each of the R orderings.
- Ordering with the highest posterior probability of being the true one is selected.
- The inference for combination-toxicity relationship is made under this ordering (subject to escalation constraint).
- Steps 2–5 are repeated.

How to choose orderings

• Specify combination-schedule grid

Combination-Schedule Grid

	S1 (16)			S1 (17)		S1 (18)		S1 (19)	S1 (20)
	N=200			N = 200		N=200		N=200	N=200
	M=30			M=60		M=90		M=130	M=180
	[210]			[420]		[630]		[910]	[1260]
S2 (11)		S2 (12)	S2 (13)		S2 (14)		S2 (15)		
N=200		N=200	N=200		N=200		N=200		
M=30		M=60	M=90		M=130		M=180		
[105]		[210]	[315]		[455]		[630]		
	S1 (6)			S1 (7)		S1 (8)		S1 (9)	S1 (10)
	N=100			N=100		N=100		N=100	N=100
	M=30			M=60		M=90		M=130	M=180
	[210]			[420]		[630]		[910]	[1260]
S2 (1)		S2 (2)	S2 (3)		S2 (4)		S2 (5)		
N=100		N=100	N=100		N=100		N=100		
M=30		M=60	M=90		M=130		M=180		
[105]		[210]	[315]		[455]		[630]		

How to choose orderings

- Specify combination-schedule grid;
- Discuss possible drivers of toxicity with clinicians;
- Provide first set of orderings
 - Start from statistical considerations (Wages et.al 2014);
 - Add clinically plausible orderings;
 - Supply with assumptions that stand behind each one;
 - Illustrate with a figure.

Example ordering

N is the main driver of toxicity, then M1774 schedule (low to moderate difference), then the total average amount of M1774.

Example Ordering

P. Mozgunov (MRC Biostatistics Unit)

How likely each of the orderings is?

- PO-CRM requires prior probability of each ordering
- Eliciting these for a large orderings can be challenging.
- Elicit **probabilities for pairs** of the anti-diagonal regimens; [Regimens (12) & (16) have the same total average dose of M774 and N, but less intensive schedule yet higher single M1774 dose.]
- Find probabilities of orderings consistent with these.

PO-CRM Parameters and Evaluations

- The parameters of the design were defined via calibration
 - High accuracy and good safety;
 - Intuitive escalation/de-escalation decisions;
- Means of the evaluation:
 - Output in hypothetical scenarios;
 - Decision-Tree;
 - Extensive simulation study
 - Possibility to overrule the model recommendation.

Example output

	200N, 30M, S1			200N, 60M, S2		200N, 90M, S2
	n=0 T= 0			n=0 T= 0		n=3 T= 1
	Mean=0.14			Mean=0.17		Mean=0.31
	Over=13.8%			Over=18.4%		Over=41.2%
	Trgt=20.4%			Trgt=23.5%		Trgt=26.9%
200N, 30M, S2		200N, 60M, S2	200N, 90M, S2		200N, 130M, S2	
n=0 T= 0		n=0 T= 0	n=0 T= 0		n=0 T= 0	
Mean=0.06		Mean=0.08	Mean=0.11		Mean=0.21	
Over=5.5%		Over=7.5%	Over=10.2%		Over=24.4%	
Trgt=11.6%		Trgt=14.3%	Trgt=17.3%		Trgt=26.3%	
	100N, 30M, S1			100N, 60M, S1		100N, 90M, S1
	n=0 T= 0			n=0 T= 0		n=0 T= 0
	Mean=0			Mean=0		Mean=0.02
	Over=0.3%			Over=0.5%		Over=1.9%
	Trgt=1.2%			Trgt=1.9%		Trgt=5.4%
100N, 30M, S2		100N, 60M, S2	100N, 90M, S2		100N,130M, S2	
n=0 T= 0		n=0 T= 0	n=0 T= 0		n=0 T= 0	
Mean=0		Mean=0	Mean=0		Mean=0	
Over=0%		Over=0.1%	Over=0.1%		Over=0.8%	
Trgt=0%		Trgt=0.3%	Trgt=0.7%		Trgt=2.8%	

Decision tree

PO-CRM in Practice

Conclusion

- Establishing of optimal doses & schedules is paramount;
- Model-based designs support a more efficient decision-making by borrowing of information;
- Close & constant collaboration with the trial team is a key;
- Various illustration tools to communicate properties;
- Has been reviewed by FDA & MHRA, and now implemented;
- Such designs take resources but it will pay off in development.