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1 Motivation

▶ Model-based designs seem to be increasingly helpful and used
for more precise statistical inference at minimal cost

Reference:
Love, et al. (2017) Embracing model-based designs for
dose-finding trials. British Journal Cancer.

Pierrillas, P. B. (2018). Model-Based Adaptive Optimal Design
(MBAOD) Improves Combination Dose Finding Designs: an
Example in Oncology. The AAPS Journal.

Yuan, Y., el at. (2019). Model-Assisted Designs for
Early-Phase Clinical Trials: Simplicity Meets Superiority.
Journal of Clinical Oncology, Precision Oncology.

▶▶▶▶ Given a regression model on a design interval X and a design
criterion, find a design that optimizes the criterion (or criteria
with possibly unequal interest in them).
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1.1 Shapes of a continuous response (in toxicology)

programming language (R_Core_Team, 2013) and the commercial soft-
ware, GraphPad Prism 6.04 for Windows (GraphPad Software, La Jolla
California USA, www.graphpad.com), to ensure that the results of our
programs were consistent with those from commonly used, standard
software. In order to ensure appropriate comparisons among the differ-
ent programs, the values of a and b were constrained to the min and
max values in any given dataset. Table 1 shows the regression results
in terms of the values of c and d. As can be seen, the values between
the different programs are very similar, validating the use of the pro-
grams presented in this paper.

4. Discussion

The four-parameter logistic equation, also known as the Hill equa-
tion (Eq. (1)) is commonly used to model the non-linear relationship

typically seen in the association between dose and response. This
involves the estimation of four parameters (a–d) in the equation.
Here we provide two user-friendly computational methods that per-
form the analysis by constraining the values of a and b and estimating
the values of c and d by means of iteration, using the criterion of least
squares.

The macros-enabled Excel template uses Solver to estimate the pa-
rameters c and d of Eq. (1) and plots the regression line based on this
equation.Manipulation of Solver is done using VBAprogramming to au-
tomatically repeat the analysis using a different set of starting values
each time for the estimation of c and d if the regression yields an error
or if the criterion of R2 ≥ 0.5 is not met, thus ensuring quality control
without any input required from the user. This template was created
for a specific need in the Call laboratory and is being routinely used
there to assay different genetic lines of D. melanogaster for their

Fig. 8. Screenshot of the window that pops up upon completion of the analysis informing the user of the successful completion of the analysis by means of the message “Done!” and the
simultaneous display of the results in the menu field of the main form of HEPB.
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75S.R. Gadagkar, G.B. Call / Journal of Pharmacological and Toxicological Methods 71 (2015) 68–76

▶ Reference: Gadagkar, S. R. and Call, G. B. (2015).
Computational tools from fitting the Hill equation to
dose-response curves Journal of Pharmacological and
Toxicologoical Methods.
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1.2 Two Types of Optimal Designs

For a given regression model and a design criterion, determine
▶ Exact optimal designs: If N is a pre-selected sample size, find

optimal number of doses (k), where the optimal doses are
(x ′i s) and the optimal number of subjects (n′i s) to assign at
each xi such that n1 + n2 + . . .+ nk = N.

▶ Continuous optimal designs (Kiefer, 1959-1980): Determine
the optimal number (k) of doses required, where these optimal
doses (x ′i s) are and the optimal proportion of subjects (p′i s) to
assign to each xi such that p1 + p2 + . . .+ pk = 1.

▶ Continuous designs assume sample size is large. When the
design criterion is a convex function of the information matrix,
the design problem is a convex optimization problem and
convex analysis results can be used to find and confirm
optimality of a continuous design via an equivalence theorem.

▶ No unified theory for finding optimal exact designs. They are
much more difficult to find and are especially useful when the
sample size is small.
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1.3 Locally D-optimal Designs for the Logistic Model on
X = [−1, 1] (Result from a PhD thesis,1976)

log
π(x)

1 − π(x)
= θ1 + θ2x , θT = (θ1, θ2), θ1 > 0 & θ2 > 0.

▶ Let a solve exp(z) = (z + 1)/(z − 1) and let u∗ solve

exp(θ1 + θ2u) =
2 + (u + 1)θ2

−2 + (u + 1)θ2
.

▶ condition locally D-optimal design
{θ : θ2−θ1 ≥ a} {a−θ1

θ2
, −a−θ1

θ2
; 1

2 ,
1
2}

{θ : θ2−θ1 < a, exp(θ1+θ2) ≤ θ2+1
θ2−1} {−1, u∗; 1

2 ,
1
2}

{θ : exp(θ1+θ2) >
θ2+1
θ2−1} {−1, 1; 1

2 ,
1
2}
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1.4 Need for Efficient Algorithms

▶ Derivation of optimal designs for nonlinear models is usually
tedious, difficult and method for one model invariably does not
generalize to another;

▶ Formulae for optimal designs rarely exist and if they do, they
are complicated and frequently unhelpful to the practitioners;

▶ Algorithms are very helpful - available only for finding some
types of optimal designs;

▶ Criteria of good algorithms: Proof of convergence, speed, ease
of use and availability of software/codes;

▶ Is there an easy-to-use and efficient method for finding optimal
designs for different types of optimal designs for different types
of models including those with multiple interacting factors?

▶ Are there effective general purpose optimization tools for
solving any type of optimization problems without requiring
technical assumptions???
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2 Meta-heuristic Algorithms

From Wikipedia, the free encyclopedia: Meta-heuristic

In computer science, meta-heuristic designates a computational
method that optimizes a problem by iteratively trying to improve a
candidate solution with regard to a given measure of quality.
Meta-heuristics make few or no assumptions about the problem
being optimized and can search very large spaces of candidate
solutions. However, meta-heuristics do not guarantee an optimal
solution is ever found. Many have stochastic components in them
(to get the algorithm out of a local optimum) and they have tuning
parameters (that user may have to input);

▶ Perhaps Simulated Annealing and Genetic Algorithms are most
familiar to statisticians, but there are many others;

▶ Generally, they seem relatively under-utilized in statistical
research.
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2.0 Our interest is nature-inspired meta-heuristic algorithms
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Particle swarm optimization: Origins

How can birds or fish ex-
hibit such a coordinated
collective behavior?
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2.1 Some Applications of PSO proposed by Eberhard and
Kennedy (IEEE, 1995)

▶ artificial neural network training
▶ K-means cluster analysis mathematical finance
▶ social networks
▶ data mining
▶ foraging techniques
▶ intrusion detection
▶ resources allocation problems
▶ course+exam scheduling in real time
▶ designing ideotypes for sustainable product systems in genetics
▶ prediction of stock market indices using hybrid genetic

algorithm and PSO with a perturbed term
▶ bioinformatics
▶ reactive power and voltage control in electric power systems
▶ COVID19 prevention and control, monitoring and prediction
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2.2 Main Features of meta-heuristics:

▶ Random generation of an initial population
▶ Each particle has a fitness value (design criterion value or

objective function value);
▶ The population moves or reproduces itself based on their

fitness values; the former is swarm based and the latter is
evolutionary;

▶ An exemplary swarmed based algorithm is Particle Swarm
Optimization (PSO) and an exemplary evolutionary algorithm
is Differential Evolution (DE). Both are very widely used.

▶ If requirements are met, stop; otherwise each particle updates
its fitness value and iteratively searches for the optimum;

▶ They are general purpose optimization algorithms,virtually
assumptions free, and they search by exploring and exploiting
the domain based on animal instincts or behavior.
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2.3 Basic Equations and Tuning Parameters in PSO

vi+1 = ωivi + c1β1(pi − xi) + c2β2(pg − xi), (1)

xi+1 = xi + vi. (2)

▶ xi and vi : position and velocity for the i th particle β1 and β2:
random vectors

▶ ωi : inertia weight that modulates the influence of the former
velocity

▶ c1 and c2: cognitive learning parameter and social learning
parameter

▶ pi and pg : Best position for the i th particle (local optimal) and
for all particles (global optimal)

17



2.4 Standardized Maximin D-optimal Designs

Let Θ be a user-specified set of all plausible values of θ. The
standardized maximin D-optimal design ξ∗SM maximizes the
minimal D-efficiency among all subsets θ of Θ, i.e.,

ξ∗SM = argmax
ξ

min
θ∈Θ

{
|I (ξ, θ)|

supγ |I (γ, θ)|

}1/m

, (3)

where m = dim(θ) and the denominator is the criterion value of the
locally D-optimal design for the specific θ.

Here, nested PSOs were used to solve the three-layer optimization
problem. In the inner loop, PSO was used to find the locally
D-optimal design for each θ. Then the worst value of the
D-efficiency was determined via another PSO. Finally, PSO was
used a third time to identify the best design among all designs ξ on
X that maximizes the minimum D-efficiency across all θ ∈ Θ.
(Chen, Chen & Wong, Chemo. and Intell. Lab. Sys., 2018)
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Recent Use of Meta-heuristics for Finding Optimal Designs

Masoudi, E., .... and Wong, W. K. (2019). Meta-heuristic Adaptive
Cubature Based Algorithm to Find Bayesian Optimal Designs for
Nonlinear Models. JCGS
Liu, X., .... and Wong, W. K. (2021). G-optimal Designs for
Hierarchical Linear Models: an Equivalence Theorem and a
Nature-inspired Meta-heuristic Algorithm. Soft Computing
Kim, S., .... and Wong, W. K. (2021). Meta-heuristics for
Pharmacometrics. Pharmacometrics and Systems Pharmacology.
Chen, P. Y., .... and Wong, W. K. (2023). Particle Swarm
Optimization for Finding Efficient Longitudinal Optima Exact
Designs for Nonlinear Models. NEJSDS
Stokes, Z., .... and Wong, W. K. (2024). Metaheuristic Solutions
to Order-of-Addition Design Problems. JCGS.
Schepps, M., ... and Wong, W. K. (2024). Optimizing Patient
Enrollment in Global Clinical Trials by Metaheuristics. Statistics in
Biopharmaceutical Research.
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2.5 Locally c-optimal Designs for a Nonlinear Model

Given a nonlinear model with mean function f (x , θ), we want to
find a design to estimate a nonlinear function g(θ). Assuming θ is
3-dimensional, the sought design ξ∗ minimizes

cT (θ)M(ξ, θ)−1c(θ)

over all designs ξ on the dose interval X, where

c(θ) = ∇g(θ) = (
∂g(θ)

∂θ0
,
∂g(θ)

∂θ1
,
∂g(θ)

∂θ2
)T

and M(ξ, θ) is the information matrix from design ξ. Assume
nominal values for θ are available. Then, a continuous design ξ∗ is
c-optimal if and only if

{f T (x , θ)M(ξ∗, θ)−1c(θ)}2 − c(θ)TM(ξ∗, θ)−1c(θ) ≤ 0 ∀x ∈ X ,

with equality at the optimal doses of ξ∗ (Berger and Wong, Intro.
to Optimal Designs, 2016). We apply this result to find Biological
Optimal Dose (BOD) or Most Successful Dose (MSD). Wong
(Biometrika, 1992) considers non-differentiable criteria.
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3 Sample Applications of PSO

To find efficient clinical trials

▶ for a 2-stage adaptive phase II trials with 3 target alternatives
▶ Simon (Controlled Clinical Trials, 1989),
▶ Lin and Shih (Biometrics, 2004).
▶ Kim and Wong (Stat. Methods in Med. Research, 2018) ;

▶ for estimating the Biologically Optimal Dose (BOD) for a
Continuation Ratio (CR) model
▶ Fan and Chaloner (J. Stat. Plan. Inference, 2004)
▶ Marshall, el at. (J. of Clinical Oncology, 20212) - Optimum

Biologic Dose (??)
▶ Qiu and Wong (New Eng. J. of Stat. & Data. Sc., 2023)

▶ for enhancing capabilities of Bayesian optimal designs for a
phase II trial (BOP2)
▶ Zhao, el at. (Stat. In Med., 2016)
▶ Zhao, el at. (Stat. Biopharm, Stat., 2022)
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3.2 Application 1: Simon 2-stage Phase II Designs

▶

Simon’s Two-Stage Designs

• X: the number of responders

Stage 1:

Enroll l patients

X > > ?

Stage 2: 

enroll l patients

X > > ?

Stop

conclude 

lack of efficacy

No

Yes

No

Yes

Conclude lack 

of efficacy

Move to 

phase III

Grey zone

Inconclusive

< <

22



3.3. Simon’s 2-stage Adaptive Phase II Trials

Review of Simon’s Design (Controlled Clinical Trials, 1989)

Simon’s Two-Stage Designs
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3.4 Various adaptive 2-stage optimal designs with 1 target
response when α = 0.05 and β = 0.20.

p0 p1 Optimal Method s1/n1 s/n 1 − α β E (N|p0) E (N|p1) CPU time
criteria (mins)

0.05 0.20 C1 GS 0/10 3/29 0.953 0.199 17.624 26.960 0.09
G-DPSO 1/15 4/40 0.968 0.197 19.274 35.822 2.51

C2 GS 0/11 3/28 0.956 0.199 18.330 26.540 0.1
G-DPSO 0/11 3/28 0.956 0.199 18.330 26.540 2.32

0.20 0.35 C1 GS 5/22 19/72 0.951 0.200 35.368 63.855 15.15
G-DPSO 5/22 19/72 0.951 0.200 35.368 63.855 2.87

C2 GS 3/21 15/53 0.950 0.200 41.148 51.941 14.25
G-DPSO 3/21 15/53 0.950 0.200 41.148 51.941 2.66

▶ C1 and C2 are Simon’s original optimality criteria
▶ Note: When p1 = 0.20 and p2 = 0.35, there many more

possible solutions compared to the case when p1 = 0.05 and
p2 = 0.20. The computation time for greedy search depends
on the size of the set of possible solutions, while PSO
generally does not.
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3.5 A Discrete Optimization Problem: Extended 2-stage
Adaptive Phase II Trials with Two Targeted Alternatives
(Lin and Shih, Biometrics, 2004)

Depending on quality of Stage 1 results, one of the 2 alternative
hypotheses is tested to target p1 more accurately.
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3.6 Extended 2-stage Adaptive Phase II Trials (cont’d)

Depending on quality of Stage 1 results, the next scenario tests one
of 3 alternative hypotheses to target p1 more accurately.

28



3.8 Extended 2-stage Adaptive Phase II Trials for 3 Targeted
Alternatives (cont’d)

Kim, S. and Wong, W. K. (Stat. Meth. in Med. Res., 2016) used a
modified version of PSO to solve the 10-integer valued optimization
problem with multiple nonlinear constraints.
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3.9 Application 2: Find Biological Optimal Dose (BOD) for
an Early Phase Clinical Trial

The Continuation Ratio Model relates probabilities of no response
(p1),efficacy and no severe toxicity (p2) and severe toxicity (p3) by:

ln[p3(θ, x)/(1 − p3(θ, x))] = a1 + b1x , b1 > 0 (4)
and ln[p2(θ, x)/p1(θ, x)] = a2 + b2x , b2 > 0, (5)

where θT = (a1, b1, a2, b2).
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3.10 Calculus (Fan & Chaloner, JSPI, 2003)

The biologically optimal dose xBOD depends on
θT = (a1, b1, a2, b2) and solves

g(x , θ) = b2(1 + e−a1−b1x)− b1(1 + ea2+b2x) = 0.

▶ By the implicit function theorem, the gradient of the solution
to the above equation is

[
∂g(xBOD(θ), θ)

∂x

]−1 ∂g(xBOD(θ), θ)

∂θ

=


e−a1−b1xBOD/[b1(e

−a1−b1xBOD + ea2+b2xBOD )]
xBODe

−a1−b1xBOD/[b1(e
−a1−b1xBOD + ea2+b2xBOD )]

ea2+b2xBOD/[b2(e
−a1−b1xBOD + ea2+b2xBOD )]

xBODe
a2+b2xBOD/[b2(e

−a1−b1xBOD + ea2+b2xBOD )]

 .

▶ Use standard algorithm to generate the locally optimal design
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3.11 Selected BOD- & D-optimal designs and
BOD-efficiencies

dose weight (a1, b1, a2, b2) dose weight BOD-efficiency
-5.67 0.001 (−3.3, 0.5, 3.4, 1) -4.63 0.292 56%
-0.64 0.800 -1.32 0.416
4.84 0.199 4.19 0.056

8.64 0.236
-1.26 0.632 (−1, 0.5, 2, 1) -3.54 0.366 67%
4.11 0.368 -0.59 0.403

4.80 0.231
-1.30 0.549 (−1.04, 0.81.2, 1) -2.67 0.370 77%
2.37 0.451 0.00 0.398

2.88 0.232
-14.00 0.100 (0.4, 0.2, 2, 1) -13.00 0.070 62%
-1.14 0.628 -4.11 0.400
9.99 0.272 -0.77 0.372

9.08 0.15834



3.12 Optimal Adaptive Designs for Finding BOD

▶ Above design strategy is not adaptive;
▶ Merging optimal design ideas and research in adaptive designs

is helpful since many latter designs do not incorporate optimal
design techniques;

▶ For example, adaptive ideas from the below paper for the CR
model can be integrated into the the proposed strategy via
meta-heuristics just described.

Reference: Alam, et al. (2019). Combined criteria for dose
optimisation in early phase clinical trials (using a CR model). Stat.
in Medicine.
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3.13 Application 3: Strategies to Enhance BOP2 designs

These are Bayesian optimal phase II designs proposed by (Zhou,et
al. SIM, 2017)

Website for Finding Bayesian Optimal Designs for Phase II (BOP2)
Trials:

https://trialdesign.org/one-page-shell.html#BOP2
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3.14 Requirements of Generating a BOP2 Design

Currently, to generate a BOP2 design, the user has to pre-specify:
(1) The total sample size, N, and, the number of interim looks, R ;
(2) the number of patients at each interim look, n1 < . . . < nR−1.
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3.15 Requirements of Generating a BOP2 Design

Currently, to generate a BOP2 design, the user has to pre-specify:
▶ The total sample size, N, and, the number of interim looks, R ;
▶ the number of patients at each interim look, n1 < . . . < nR−1.
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3.16 Optimize the BOP2 Design

We investigate how PSO can additionally optimize the setup by
(1) Optimizing the total sample size, N, and, the number of

interim looks, R ;
(2) Optimizing the sample size at each interim look,

n1 < n2 < · · · < nR−1.
through the objective function

max
N,R

{
max

n1<n2<···<nR−1
Power

}
or a compound criterion considering both maximizing power and
minimizing expected sample size with a pre-specified weigh α

max
N,R

{
max

n1<n2<···<nR−1
α× Power − (1 − α)× 1

N
E (N | H0)

}
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3.17 Preliminary Results

▶ If power dominates the objective function, the resulting best
BOP2 design would be no interim look (test only once when
all patients are enrolled).

▶ Thus, let α = 0.4 for the compound criterion. Below are the
current results of PSO-generated BOP2 designs based on the
fixed design requirements:
(0) H0 : θ ≤ 0.2 vs. H1 : θ ≥ 0.4 and Type I error rate = 0.1.
(1) Fix N = 50

PSO-BOP2 Crit. CPU Time
R Design Value Power E (N | H0) (seconds)
3 4, 35, 50 0.8657 0.8505 43.8 15.0
6 4, 9, 43, 45, 48, 50 0.8449 0.8289 42.8 400.2
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4 Summary

Other Nature-Inspired Algorithms:
▶ Differential evolution (1995)
▶ Bees algorithm (2006)
▶ Invasive weed optimization (2006)
▶ Artificial bee colony algorithm (2007)
▶ Monkey search (2007)
▶ Imperialist competitive algorithm (2007)
▶ Intelligent water drops algorithm (2009)
▶ Glowworm swarm optimization (2009)
▶ Cuckoo search (Yang & Deb, 2009, Journal of Mathematical

Modeling and Numerical Optimization)
▶ Firefly algorithm (2009, 2010)
▶ Bat algorithm (2010)

and the list goes on and on...
41



4.1 Conclusions

▶ PSO methodology offers great promise and I believe represents
a leap forward in the field of optimal experimental designs;

▶ Optimal designs should be more accessible now and hopefully
optimal design ideas will be more widely used in practice, but
not religiously;

▶ Nature-inspired meta-heuristic algorithms are assumptions free
and general purpose optimization tools;

▶ Did I oversell nature-inspired metaheuristic algorithms?

▶ Nature-inspired algorithms are not problems free, but they are
very appealing for both academicians and practitioners on
many fronts.....
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